

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

Service life model for PV-modules

Model to predict the service lifetime of PV-modules in moderate climates

Ismail Kaaya (ESR 3)

Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg, Germany, Phone +49 (0) 761-4588 -5919, ismail.kaaya@ise.fraunhofer.de

MOTIVATION

Outdoor mult-c-Si Module showing yellowing and mettalization corrosion. (N.kahoul et al, renene 2017)

- More and more photovoltaic modules are being installed throughout the world, however less is known about their reliability.
- Understanding the performance degradation of photovoltaic modules is critical for optimizing it's financial viability and ensuring electrical safety throughout a module's service life is essential.
- > There is a need to develop a valid service life and perfomance degradation model to estimate the reliability of PV modules taking into consideration the different climatic conditions.

OPEN QUESTIONS

- \succ What are the most common degradation modes in PV modules?
- > What are the impacts of both internal and external stress factors on PV module components' degradation?
- \succ How to predict the service lifetime of PVmodules using mathematical models and numeric simulations, taking into account both material degradation and microclimate loads?

METHODS

Modeling transport phenonmenon

Calculation and numerical simulation of relavant transport phenomenon in PV module and quantification of specific

PV MODULE DEGRADATION

- \succ Here degradation is defined as the gradual decrease in the output power over time.
- \succ In literature[1,2], the most common c-Si PV module degradation modes include:
- Corrosion, Encapsulant discoloration, Cell breaking, Solder bond failures and Interconnects cracking.
- \succ These modes are due to the influence of: Temperature, humidity, UV irradiation, wind/snow loads and different thermal expansion/coefficients.

- 1. A. Charki et al, ," Accelerated degradation testing of a PV module', Paper 12017SSP, 2013.
- 2. C.R. Osterwald and T.J. McMahon, "History of accelerated and qualification testing of terrestrial photovoltaic modules.'a literature review." prog. Photovoltaic.

t / hhhh Figure showing time of failure from accelerated tests (Michael Köhl, Karl-Anders Weiß)

impacts of various external and internal stresses such as temperature, UV irradiation, relative humidity, on specific module components such as encapsulation, metallization, backsheet.

Micro-climate model

> Finding a micro-climnate model for module degradation on the basis of collected climatic data and PV module perfomance data.

Service life prediction model

Formulate material degradation and micro-climate models in an integrated model for PV module service lifetime prediction.

WP1

MODELING DEGRADATION MODES KINETICS

- Identification of relevant dominating or common degradation modes in PV module.

> Here we define microclimates as the in-service

WP2

WP3

SERVICE LIFE MODEL VALIDATION

Combine both material degradation model and micro-

- Identification of stress factors leading to specific degradation mechanisms and on specific module components.
- Identification of related mathematical models and simulations to reproduce the common degradation modes.
- > Validate and analyse the models with accelarated tests or outdoor data available.
- environment of polymeric materials contained within the PV module.

MICRO-CLIMATE MODELING

- \succ The influence of the microclimate on the aging behavior of polymeric materials on the optical, chemical and morphological properties of the materials will be studied.
- Correlation of the microclimate model with accelerated aging test results.
- climate model into a single model for service lifetime prediction.
- Validate the model with outdoor data and accellerated aging tests.
- \succ Test the model with c-Si PV module technology and correlate it with oudoor performance.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skodowska-Curie GA. No. 721452.

