UNCERTAINTY IN CALIBRATION AND CHARACTERISATION OF PYRANOMETERS

Francesco Mariottini^{1*}, Thomas R. Betts¹, Giorgio Belluardo²

1) Centre for Renewable Energy Systems Technology (CREST), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, United Kingdom, *f.mariottini@lboro.ac.uk, +44(0) 01509 635353

2) Institute for Renewable Energy - EURAC Research, Viale Druso 1, Bolzano, 39100, Italy

AIM	MOTIVATION	J	METHODOLOGY		
1) To propose a new, faster, sequential indoor calibration of pyranometers	True field uncertainties can be tw minimum values of 2% (hourly	wice the datasheet /) and 3% (daily)	1) Data handling procedures comparison for outdoor calibrations.		
2) To assess the impact of different pyranometer calibration procedures on solar resource assessment	Better understanding of benefits high quality calibrat Time-intensive single indoc and/or unsuitable conditions for c	and constraints of tions or calibration outdoor calibration	 2) <u>New sequential calibration</u> indoors and comparison with existing methods. 3) <u>Scenarios evaluation</u> with real data from a solar farm. 		
TEST SUBJECTS	METHODOLOGY (1): Data handling				
EURAC: three Secondary Stan (SS, high quality) from manufac m1 and one Second Class (2C.	dard turer	Filter short description irrad	Beam Dif liance, min irrad [W/m ²] max	ffuseDiffuse fractiondiance,(diffuse / global[W/m²]irradiance),max [%]	Number of series

All clear sky series

One clear sky series per

CREST: three Secondary Standard from m1, one with a temperature sensor (t2) and two without (t1).

moderate quality) from m2.

Outdoor calibration of pyranometers [image kindly provided by EURAC]

METHODOLOGY (2): New sequential calibration

under the Marie Sklodowska-Curie

grant agreement No 721452.

group of angles of incidence				group of
One series per group of	0	1000	100	angles of
angles of incidence	0	1000	100	incidence)

150

32

15 (one per

15 (clear sky

series)

Overview of adopted filters during mostly sunny days (daily diffuse fraction lower than 15%). Clear sky series correspond to a diffuse fraction not higher than 15%

700

RESULTS

